Tag Archives: cooler compressor

China Hot selling Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R407c Single Hlp081t4 in Stock small air compressor

Product Description

 

 

Hermetic piston compressor, MT/Z medium and high temperature compressor specifications
Rated Performance R22,R407C-50HZ
Model Rated Performance* MT-R22 Rated Performance** MTZ-R407C
Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W) Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W)
MT/MTZ 18 JA 3881 1.45 2.73 2.68 3726 1.39 2.47 2.68
MT/MTZ 22 JC 5363 1.89 3.31 2.84 4777 1.81 3.31 2.64
MT/MTZ 28 JE 7378 2.55 4.56 2.89 6137 2.35 4.39 2.61
MT/MTZ 32 JF 8064 2.98 4.97 2.70 6941 2.67 5.03 2.60
MT/MTZ 36 JG 9272 3.37 5.77 27.5 7994 3.12 5.71 2.56
MT/MTZ 40 JH 1571 3.85 6.47 2.72 9128 3.61 6.45 2.53
MT/MTZ 44 HJ 11037 3.89 7.37 2.84 9867 3.63 6.49 2.72
MT/MTZ 50 HK 12324 4.32 8.46 2.85 11266 4.11 7.34 2.74
MT/MTZ 56 HL 13771 5.04 10.27 2.73 12944 4.69 8.36 2.76
MT/MTZ 64 HM 15820 5.66 9.54 2.79 14587 5.25 9.35 2.78
MT/MTZ 72 HN 17124 6.31 10.54 2.71 16380 5.97 10.48 2.74
MT/MTZ 80 HP 19534 7.13 11.58 2.74 18525 6.83 11.83 2.71
MT/MTZ 100 HS 23403 7.98 14.59 2.93 22111 7.85 13.58 2.82
MT/MTZ 125 HU 3571 10.66 17.37 2.85 29212 10.15 16.00 2.88
MT/MTZ 144 HV 34340 11.95 22.75 2.87 32934 11.57 18.46 2.85
MT/MTZ 160 HW 38273 13.39 22.16 2.86 37386 13.28 21.40 2.82
MTM/MTZ200 HSS 46807 15.97 29.19 2.93 43780 15.54 26.90 2.82
MTM/MTZ250HUU 6 0571 21.33 34.75 2.85 57839 20.09 31.69 2.88
MTM/MTZ288 HVV 68379 23.91 45.50 2.87 65225 22.92 36.56 2.85
MTM/MTZ 320 HWW 76547 26.79 44.32 2.86 74571 26.30 42.37 2.81

 

Rated Performance*High Efficiency CompressorR22-50HZ
Model Capacity/(W) Input Power (KW) Inputcuprret/(A) COP(W/W)
MT 45 HJ 10786 3.62 6.86 2.98
MT 51 HK 12300 4.01 7.86 3.07
MT 57 HL 13711 4.54 9.24 3.02
MT 65 HM 15763 5.23 8.81 3.01
MT 73 HN 17863 5.98 9.99 2.99
MT 81 HP 25718 6.94 11.27 2.93

R134a,R404A,R507-50Hz
 Model Rated Performance* R134A Rated Performance**R404A,R507-50HZ
Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W) Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W)
MT/MTZ 18 JA 2553 0.99 2.19 2.58 1865 1.2 2.47 1.56
MT/MTZ22 JC 3352 1.20 2.51 2.80 2673 1.56 2.96 1.71
MT/MTZ 28 JE 4215 1.53 3.30 2.75 3343 1.95 3.80 1.72
MT/MTZ 32 JF 4951 1.87 3.94 2.65 3747 2.28 4.51 1.64
MT/MTZ 36 JG 6005 2.13 4.09 2.81 4371 2.66 4.91 1.64
MT/MTZ 40 JH 6398 2.33 4.89 2.74 4889 3.00 5.36 1.63
MT/MTZ 44 HJ 6867 2.52 5.65 2.72 5152 3.16 6.37 1.63
MT/MTZ 50 HK 8071 2.88 5.50 2.80 6152 3.61 6.53 1.70
MT/MTZ 56 HL 9069 3.21 5.83 2.82 7001 4.00 7.07 1.75
MT/MTZ 64 HM 1571 3.62 6.96 2.86 8132 4.54 8.30 1.79
MT/MTZ 72 HP 11853 4.01 7.20 2.96 9153 4.99 8.64 1.84
MT/MTZ 80 HP 13578 4.63 8.45 2.93 10524 5.84 10.12 1.80
MT/MTZ 100 HS 15529 5.28 10.24 2.94 12571 6.83 12.16 1.76
MT/MTZ 125 HU 19067 6.29 10.80 3.03 15714 8.53 13.85 1.84
MT/MTZ 144 HV 23620 7.83 13.78 3.02 18076 9.74 16.25 1.86
MT/MTZ 160 HW 25856 8.57 14.67 3.02 25713 11.00 17.94 1.84
MTM/MTZ200 HSS 3571 10.45 20.28 2.94 23800 13.53 24.06 1.76
MTM/MTZ 250 HUU 37746 12.45 21.38 3.03 31121 16.88 27.43 1.84
MTM/MTZ288 HVV 46773 15.49 27.29 3.02 35779 19.28 32.18 1.86
MTM/MTZ 320 HWW 51169 16.98 29.06 3.01 40093 21.76 35.51 1.84

 

50HZ DATA  
Model  50Hz Nominal Cooling Capacity/Capacity Input Power COP E.E.R. c Displacement Displacement Injection flow d Net.W
TR W Btu/h KW W/W Btu/h/W cm³/rev m3/h dm3 kg
R22 Single Sm084 7 20400 69600 6.12 3.33 11.4 114.5 19.92 3.3 64
SM090 7.5 21800 74400 6.54 3.33 11.4 120.5 20.97 3.3 65
SM100 8 23100 79000 6.96 3.33 11.3 127.2 22.13 3.3 65
SM110 9 25900 88600 7.82 3.32 11.3 144.2 25.09 3.3 73
SM112 9.5 27600 94400 7.92 3.49 11.9 151.5 26.36 3.3 64
SM115 9.5 28000 95600 8.31 3.37 11.5 155.0 26.97 3.8 78
SM120 10 35710 157100 8.96 3.36 11.5 166.6 28.99 3.3 73
SM124 10 31200 106300 8.75 3.56 12.2 169.5 29.5 3.3 64
SM125 10 35710 157100 8.93 3.37 11.5 166.6 28.99 3.8 78
SM147 12 36000 123000 10.08 3.58 12.2 193.5 33.7 3.3 67
SM148 12 36100 123100 10.80 3.34 11.4 199.0 34.60 3.6 88
SM160 13 39100 133500 11.60 3.37 11.5 216.6 37.69 4.0 90
SM161 13 39000 133200 11.59 3.37 11.5 216.6 37.69 3.6 88
SM175 14 42000 143400 12.46 3.37 11.5 233.0 40.54 6.2 100
SM/SY185 15 45500 155300 13.62 3.34 11.4 249.9 43.48 6.2 100
SY240 20 61200 2 0571 0 18.20 3.36 11.5 347.8 60.50 8.0 150
SY300 25 78200 267000 22.83 3.43 11.7 437.5 76.10 8.0 157
SY380 30 94500 322700 27.4 3.46 11.8 531.2 92.40 8.4 158
R107C Single SZ084 7 19300 66000 6.13 3.15 10.7 114.5 19.92 3.3 64
SZ090 7.5 20400 69600 6.45 3.16 10.8 120.5 20.97 3.3 65
SZ100 8 21600 73700 6.84 3.15 10.8 127.2 22.13 3.3 65
SZ110 9 24600 84000 7.76 3.17 10.8 144.2 25.09 3.3 73
SZ115 9.5 26900 91700 8.49 3.16 10.8 155.0 26.97 3.8 78
SZ120 10 28600 97600 8.98 3.18 10.9 166.6 28.99 3.3 73
SZ125 10 28600 97500 8.95 3.19 10.9 166.6 28.99 3.8 78
SZ148 12 35100 119800 10.99 3.19 10.9 199.0 34.60 3.6 88
SZ160 13 38600 131800 11.77 3.28 11.2 216.6 37.69 4.0 90
SZ161 13 37900 129500 11.83 3.21 10.9 216.6 37.69 3.6 88
SZ175 14 45710 136900 12.67 3.17 10.8 233.0 40.54 6.2 100
SZ185 15 43100 147100 13.62 3.16 10.8 249.9 43.48 6.2 100
SZ240 20 59100 201800 18.60 3.18 10.9 347.8 60.50 8.0 150
SZ300 25 72800 248300 22.70 3.20 10.9 437.5 76.10 8.0 157
SZ380 30 89600 305900 27.60 3.25 11.1 431.2 92.40 8.4 158

Model Nominal Cooling Capacity 60Hz Nominal Cooling Capacity/Capacity Input Power maximum rated current COP  Displacement  Displacement  Injection flow Net.W
TR W Btu/h kW MCC COP W/W EERBtu/h/W cmVrev m3/h dm3 kg
R22 HRM032U4 2.7 7850 26790 2.55 9.5 3.08 10.5 43.8 7.6 1.06 31
HRM034U4 2.8 8350 28490 2.66 9.5 3.14 10.5 46.2 8.03 1.06 31
HRM038U4 32 9240 31520 2.94 10.0 3.14 10.7 46.2 8.03 1.06 31
HRM040U4  3.3 9710 33120 2.98 10 3.26 11.1 54.4 9.47 1.06 31
HRM042U4 35 10190 34770 3.13 11.0 3.26 11.1 57.2 9.95 1.06 31
HRM045U4 3.8 10940 37310 3.45 12 3.17 10.8 61.5 10.69 1.33 31
HRM047U4 3.9 11500 39250 3.57 12.0 3.23 11.0 64.1 11.15 1.33 31
HRM048U4 4 11510 39270 3.57 12.5 3.23 11 64.4 11.21 1.57 37
HRM051T4 4.3 12390 44280 3.67 13.0 3.37 11.5 68.8 11.98 1.57 37
HRM051U4 4.3 12800 43690 3.83 13 3.34 11.4 68.8 11.98 1.57 37
HRM054U4 4.5 13390 45680 3.97 13.1 3.37 11.5 72.9 12.69 1.57 37
HRM058U4 4.8 14340 48930 4.25 15 3.37 11.5 78.2 13.6 1.57 37
HRM060T4 5.0 14570 49720 4.28 15.0 3.40 11.6 81.0 14.09 1.57 37
HRM060U4 5.0  14820 5 0571 4.4 15 3.37 11.5 81 14.09 1.57 37
HLM068T4 5.7 16880 57580 5.00 15.0 3.37 11.5 93.1 16.20 1.57 37
HLM072T4 6.0  17840 6 0571 5.29 15 3.37 11.5 98.7 17.2 1.57 37
HLM075T4 6.3 18430 62880 5.37 16.0 3.43 11.7 102.8 17.88 1.57 37
HLM081T4 6.8 19890 67880 5.8 17 3.43 11.7 110.9 19.3 1.57 37
HCM094T4 7.8 23060 78670 6.80 21.0 3.39 11.6 126.0 21.93 2.66 44
HCM109T4 9.1 26690 91070 7.77 24 3.43 11.7 148.8 25.89 2.66 44
HCM120T4 10.0 29130 99390 8.51 25.0 3.42 11.7 162.4 28.26 2.66 44
R407C HRP034T4  2.8 7940 27080 2.68 9.5 2.96 10.1 46.2 8 1.06 31
HRP038T4 3.2 8840 30150 2.82 11 3.14 10.7 51.6 8.98 1.06 31
HRP040T4 3.3 9110 31080 3.14 11.5 2.9 9.9 54.4 9.47 1.06 31
HRP042T4 3.5 9580 32680 3.3 10 2.9 9.9 57.2 9.95 1.06 31
HRP045T4 3.8 1571 36890 3.58 12 3.02 10.3 61.5 10.69 1.33 31
HRP047T4 3.9 11130 37980 3.69 12 3.02 10.3 64.1 11.15          1.33 31
HRP048T4 4.0  11100 37880 3.35 12 3.31 11.3 64.4 1L21 1.57 37
HRP051T4 4.3 12120 41370 3.83 13 3.17 10.8 68.8 11.98 1.57 37
HRP054T4 4.5 12570 42880 3.97 12.5 3.17 10.8 72.8 12.66 1.57 37
HRP058T4 4.8 13470 45970 4.25 14.0 3.17 10.8 78.2 13.6 1.57 37
HRP060T4 5.0  13860 47280 4.26 15 3.25 11.1 81 14.09 1.57 37
HLP068T4 5.7 15700 53560 5.10 15.0 3.08 10.5 93.1 16.20 1.57 37
HLP072T4 6.0  16810 57350 5.16 15 3.26 11.1 98.7 17.17 1.57 37
HLP075T4 6.3 18040 61550 5.54 16.0 3.26 11-1 102.8 17.88 1.57 37
HLP081T4 6.8 18600 63470 5,66 17 3.28 11,2 110,9 19,30 1,57 37
HCP094T4 7.8 21590 73660 6.63 21.0 3.26 11.1 126.0 21.93 2.66 44
HCP109T4 9.1 25070 85550 7.77 24 3.23 11 148.8 25.89 2.66 44
HCP120T4 10.0 27370 93400 8.47 25.0 3.23 11.0 162.4 28.26 2.66 44
R410A HRH571U4 2.4 7120 24310 2.43 10 2.93 10 27.8 4.84 1.06 31
HRH031U4 26 7530 25710 2.67 10.0 2.82 9.62 29.8 5.19 1.06 31
HRH032U4 2.7 7670 26170 2.75 10 2.79 9.51 30.6 5.33 1.06 31
HRH034U4 2.8 8500 29000 2.90 10.0 2.93 10.0 33.3 5.75 1.06 31
HRH036U4 3 8820 30110 3.13 10 2.82 9.62 34.7 6.04 1.06 31
HRH038U4 3.2 9250 31560 3.35 12.0 2.76 9.41 36.5 6.36 1.06 32
HRH040U4 3.3 15710 34810 3.58 12 2.85 9.72 39.6 6.9 1.33 32
HRH041U4 3.3 10050 34300 3.43 12.5 2.93 10 39.3 6.8 1.57 37
HRH044U4 3.7 1 0571 36940 3.92 13.5 2.76 9.41 42.6 7.41 1.57 37
HRH049U4 4.1 12110 41320 4.04 13.5 2.99 10.22 47.4 8.24 1.57 37
HRH051U4 4.3 12860 43890 4.21 13 3.05 10.42 49.3 5.58 1.57 37
HRH054U4 4.5 13340 45510 4.41 15.0 3.02 10.32 52.1 9.07 1.57 37
HRH056U4 4.7 13830 47200 4.58 15 3.02 1031 54.1 9.42 1.57 37
HLH061T4 5.1 15210 51880 4.89 15.0 3.11 1061 57.8 10.10 1.57 37
HLH068T4  5.7 16880 57610 5.26 19 3.21 1096 64.4 11.21 1.57 37
HLJ072T4 6.0 17840 60900 5.56 19.0 3.21 11.0 68.0 11.82 1.57 37
HLJ075T4  6.3 18600 63490 5.77 18 3.22 11 70.8 12.32 1.57 37
HLJ083T4 6.9 20420 69690 6.28 19.0 3.25 Hl 78.1 13.59 1.57 37
HCJ090T4 7.5 22320 76190 7.19 19 3.11 10.6 86.9 15.11 2.66 44
HCJ105T4 8.8 26100 89090 8.25 25.0 3.16 10.8 101.6 17.68 2.66 44
HCJ120T4 10 29610 157180 9.53 27 3.11 10.6 116.4 20.24 2.66 44

 

Model HP Voltage
MLM019T5LP9 2.5 220-240V-1-50HZ
MLM571T5LP9 3 220-240V-1-50HZ
MLM026T5LP9 3.5 220-240V-1-50HZ
MLM015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLM019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLM571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLM026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLM030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLM038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLM045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLM048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLM058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLM066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLM076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22.
 
Model HP Voltage
MLZ019T5LP9 2.5 220-240V-1-50HZ
MLZ571T5LP9 3 220-240V-1-50HZ
MLZ026T5LP9 3.5 220-240V-1-50HZ
MLZ015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLZ019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLZ571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLZ026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLZ030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLZ038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLZ045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLZ048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLZ058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLZ066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLZ076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22

Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Installation Type: Movable Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Model: Hlp081t4
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China Hot selling Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R407c Single Hlp081t4 in Stock   small air compressor China Hot selling Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R407c Single Hlp081t4 in Stock   small air compressor
editor by CX 2024-02-14

China high quality Water Cooler Screw  Air Compressor air compressor repair near me

Product Description

Water cooler Screw Air Compressor

Application :
Air compressor is general industry equipment, is the second largest power source, is also the process air source with multiple uses, widely used in mining exploitation, oil drilling, iron and steel metallurgy, electric power, shipbuilding, electronics production, petroleum chemical industry, light industry, machinery manufacturing, food and medicine, transportation facilities, shipping docks, casting coating, automobile industry, aerospace, military technology, infrastructure and so on fields.
Features: adopt twin rotor/screw air end for compression air.

 

Advantages of our screw air compressor
1. Approved by ISO9001certificate, SGS, CE and etc..
2. Adopt the most advanced technology and world famous brand of twin rotor/screw air end in designing and  manufacturing, no leakage, ensure high air discharge and low energy consumption.
3. Adopt high quality electric motor with CHINAMFG bearing, IP54, convenient maintenance and long use life.
4. Adopt world famous brand of air intake filter, oil filter, air and oil separator, realize high filtration accuracy, compressed air oil content under 3ppm, reach to international advanced standard level. 

5. Equip with the most advanced air control system. Adopt air intake valve, intelligent control system and pressure sensor combined control method, can operate by ON and OFF 2 point, stepless air capacity control system, time-delay stop and automatically start device 3 air capacity control methods, can meet different clients demand.
6. Intelligent microcomputer control system, Chinese and English language operation interface, malfunction display, alarm and machine stop automatically.
7. Adopt high quality and world famous brand of main components, like UK APD oil filter, America AMOT temperature controlling valve, SCHNEIDER electric parts and etc., high efficiency, reliable and long use life.
8. Equip with after air compression cooler combination with the air and water separator, compact structure and save space, avoid leakage and improve the air and water separating efficiency mostly.

Parameters of  our twin-screw air compressor 

NOTE: F stands for wind cooling type, W stands for water cooling type. Other type of pressure value machine can be customized.

Model TKL-2F TKL-3F TKL-4F TKL-5F TKL-7F TKL-11F TKL-15F TKL-18F TKL-22F TKL-30F TKL-37F TKL-45F/W TKL-55F/W TKL-75F/W TKL-90F/W
Air displacemen/
Exhause pressure (m3/min/Mpa)
0.33/0.7 0.43/0.7 0.6/0.7 0.8/0.7 1.23/0.7 1.65/0.7 2.7/0.7 3.0/0.7 3.6/0.7 5.2/0.7 6.6/0.7 7.8/0.7 10.1/10.7 13.5/0.7 16.3/0.7
0.33/0.8 0.4/0.8 0.55/0.8 0.7/0.8 1.16/0.8 1.62/0.8 2.5/0.8 2.92/0.8 3.53/0.8 5.0/0.8 6.3/0.8 7.5/0.8 9.8/0.8 12.3/0.8 15.6/0.8
0.25/1.0 0.36/1.0 0.5/1.0 0.65/1.0 1.02/1.0 1.4/1.0 2.0/1.0 2.7/1.0 3.2/1.0 4.5/1.0 5.6/1.0 6.8/1.0 8.8/1.0 11.0/1.0 14.2/1.0
0.22/1.3 0.3/1.3 0.45/1.3 0.6/1.3 0.86/1.3 1.21/1.3 1.8/1.3 2.2/1.3 2.4/1.3 3.5/1.3 4.8/1.3 5.8/1.3 7.2/1.3 9.0/1.3 11.5/1.3
Power/ (Kw) 2.2 3 4 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90
Ooltage (V/Hz) 380V/50Hz
Noise    (±3,dBa) 63 63 65 65 67 67 68 70 72 73 74 75 76 78 78
Exhaust temprature Wind cooling type <=Environmental temperature+13ºC,  Water cooling type <=40ºC,
Outlet pipe size 1/2″ 1/2″ 1/2″ 1/2″ 1/2″ 3/4″ 1″ 1″ 1″ 1 1/2″ 1 1/2″ 1 1/2″ DN50 DN50 DN50
Weight (Kg) 260 280 300 350 360 400 430 590 650 950 980 1050 1850 1900 2100
Dimensions (mm) 800*760*1102 800*760*1102 800*760*
1102
800*760*
1102
800*760*
1102
950*760*1202 900*1000*1290 belt type 900*1000*1290 1500*950*1280 1600*1100*1430 1900*1150*1500 2000*1150*1680
strait type 1350*850*1257

 

Model TKL-110
F/W
TKL-132
F/W
TKL-160
F/W
TKL-185
F/W
TKL-200
F/W
TKL-220
F/W
TKL-250
F/W
TKL-280
F/W
TKL-
315W
TKL-
355W
TKL-
400W
TKL-
450W
TKL-
500W
TKL-
560W
TKL-
630W
Air displacemen/
Exhause pressure (m3/min/Mpa)
20.4/0.7 24/0.7 27.8/0.7 32.5/0.7 35/0.7 40.7/0.7 45.3/0.7 51.5/0.7 57/0.7 68/0.7 73.6/0.7 83/0.7 90/10.7 101/0.7 111/0.7
20/0.8 23/0.8 27.1/0.8 30.5/0.8 33.3/0.8 38.2/0.8 43/0.8 50.5/0.8 55.5/0.8 66.2/0.8 71.4/0.8 82/0.8 89/0.8 100/0.8 110/0.8
17.8/1 21/1.0 25.2/1.0 27/1.0 30.6/1.0 34.5/1.0 38.1/1.0 43/1.0 50.5/1.0 55.6/1.0 62/1.0 73/1.0 80/1.0 86/1.0 95/1.0
14.5/1.3 18.1/1.3 21.2/1.3 23.6/1.3 26.3/1.3 29.8/1.3 35/1.3 38.3/1.3 42.1/1.3 46.5/1.3 52.5/1.3 60/1.3 68/1.3    
Power/ (Kw) 110 132 160 185 200 220 250 280 315 355 400 450 500 560 630
Ooltage (V/Hz) 380V/50Hz 380-10000V/50Hz
Noise    (±3,dBa) 78 78 78 78 80 80 80 80 80 80 82 82 82 82 82
Exhaust temprature Wind cooling type <=Environmental temperature+13ºC,  Water cooling type <=40ºC,
Outlet pipe size DN80 DN80 DN80 DN80 DN100 DN100 DN100 DN100 DN125 DN125 DN150 DN150 DN150 DN200 DN200
Weight (Kg) 3300 3500 4000 4600 4700 5100 5100 5500 7500 8300 8400 9000 9500 10000 10000
Dimensions (mm) F 2800*1540*1900 F 2800*1540*1900 F 3150*1650*1900 F 3100*1940*2389 F 3400*2000*2330 4500*200*2462 4650*2340*2835
W 2400*1540*1900 W 2400*1540*1900 W 2600*1700*1980 W 2600*1700*1980 W 3200*1800*2125

Our factory and workshop:

After sales service for our air CHINAMFG product:
1. Providing professional air compression program designing for free.
2. Providing our factory original machine parts at lowest price after machine sales.
3. Providing training and guidance for free, customers can send their staff to our factory to learn how to operate the machines.
4. Warranty period: the screw main machine is 1 year, the bearing is 1 year, the wear parts of air intake valve, electric components, electromagnetic valve, rate valve are 6 months
5. The air filter, oil filter, oil-water separator, lubricating oil, rubber parts and etc. are not included in warranty range.

Certification and patents of our air compressor

FAQ:
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: Warranty terms of your machine? 
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines? 
A3: Yes, of course.
Q4: How long will you take to arrange production? 
A4: 380V 50HZ we can delivery the goods within 20 days. Other electricity or other color we will delivery within 30 days.
Q5: Can you accept OEM orders? 
A5: Yes, with professional design team, OEM orders are highly welcome!

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Water Cooling
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China high quality Water Cooler Screw  Air Compressor   air compressor repair near meChina high quality Water Cooler Screw  Air Compressor   air compressor repair near me
editor by CX 2024-02-10

China best Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R22 Single Hrm060u4 in Stock air compressor for car

Product Description

 

 

Hermetic piston compressor, MT/Z medium and high temperature compressor specifications
Rated Performance R22,R407C-50HZ
Model Rated Performance* MT-R22 Rated Performance** MTZ-R407C
Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W) Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W)
MT/MTZ 18 JA 3881 1.45 2.73 2.68 3726 1.39 2.47 2.68
MT/MTZ 22 JC 5363 1.89 3.31 2.84 4777 1.81 3.31 2.64
MT/MTZ 28 JE 7378 2.55 4.56 2.89 6137 2.35 4.39 2.61
MT/MTZ 32 JF 8064 2.98 4.97 2.70 6941 2.67 5.03 2.60
MT/MTZ 36 JG 9272 3.37 5.77 27.5 7994 3.12 5.71 2.56
MT/MTZ 40 JH 1571 3.85 6.47 2.72 9128 3.61 6.45 2.53
MT/MTZ 44 HJ 11037 3.89 7.37 2.84 9867 3.63 6.49 2.72
MT/MTZ 50 HK 12324 4.32 8.46 2.85 11266 4.11 7.34 2.74
MT/MTZ 56 HL 13771 5.04 10.27 2.73 12944 4.69 8.36 2.76
MT/MTZ 64 HM 15820 5.66 9.54 2.79 14587 5.25 9.35 2.78
MT/MTZ 72 HN 17124 6.31 10.54 2.71 16380 5.97 10.48 2.74
MT/MTZ 80 HP 19534 7.13 11.58 2.74 18525 6.83 11.83 2.71
MT/MTZ 100 HS 23403 7.98 14.59 2.93 22111 7.85 13.58 2.82
MT/MTZ 125 HU 3571 10.66 17.37 2.85 29212 10.15 16.00 2.88
MT/MTZ 144 HV 34340 11.95 22.75 2.87 32934 11.57 18.46 2.85
MT/MTZ 160 HW 38273 13.39 22.16 2.86 37386 13.28 21.40 2.82
MTM/MTZ200 HSS 46807 15.97 29.19 2.93 43780 15.54 26.90 2.82
MTM/MTZ250HUU 6 0571 21.33 34.75 2.85 57839 20.09 31.69 2.88
MTM/MTZ288 HVV 68379 23.91 45.50 2.87 65225 22.92 36.56 2.85
MTM/MTZ 320 HWW 76547 26.79 44.32 2.86 74571 26.30 42.37 2.81

 

Rated Performance*High Efficiency CompressorR22-50HZ
Model Capacity/(W) Input Power (KW) Inputcuprret/(A) COP(W/W)
MT 45 HJ 10786 3.62 6.86 2.98
MT 51 HK 12300 4.01 7.86 3.07
MT 57 HL 13711 4.54 9.24 3.02
MT 65 HM 15763 5.23 8.81 3.01
MT 73 HN 17863 5.98 9.99 2.99
MT 81 HP 25718 6.94 11.27 2.93

R134a,R404A,R507-50Hz
 Model Rated Performance* R134A Rated Performance**R404A,R507-50HZ
Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W) Capacity(W)  Input Power (KW)  Input current(A)  COP  (W/W)
MT/MTZ 18 JA 2553 0.99 2.19 2.58 1865 1.2 2.47 1.56
MT/MTZ22 JC 3352 1.20 2.51 2.80 2673 1.56 2.96 1.71
MT/MTZ 28 JE 4215 1.53 3.30 2.75 3343 1.95 3.80 1.72
MT/MTZ 32 JF 4951 1.87 3.94 2.65 3747 2.28 4.51 1.64
MT/MTZ 36 JG 6005 2.13 4.09 2.81 4371 2.66 4.91 1.64
MT/MTZ 40 JH 6398 2.33 4.89 2.74 4889 3.00 5.36 1.63
MT/MTZ 44 HJ 6867 2.52 5.65 2.72 5152 3.16 6.37 1.63
MT/MTZ 50 HK 8071 2.88 5.50 2.80 6152 3.61 6.53 1.70
MT/MTZ 56 HL 9069 3.21 5.83 2.82 7001 4.00 7.07 1.75
MT/MTZ 64 HM 1571 3.62 6.96 2.86 8132 4.54 8.30 1.79
MT/MTZ 72 HP 11853 4.01 7.20 2.96 9153 4.99 8.64 1.84
MT/MTZ 80 HP 13578 4.63 8.45 2.93 10524 5.84 10.12 1.80
MT/MTZ 100 HS 15529 5.28 10.24 2.94 12571 6.83 12.16 1.76
MT/MTZ 125 HU 19067 6.29 10.80 3.03 15714 8.53 13.85 1.84
MT/MTZ 144 HV 23620 7.83 13.78 3.02 18076 9.74 16.25 1.86
MT/MTZ 160 HW 25856 8.57 14.67 3.02 25713 11.00 17.94 1.84
MTM/MTZ200 HSS 3571 10.45 20.28 2.94 23800 13.53 24.06 1.76
MTM/MTZ 250 HUU 37746 12.45 21.38 3.03 31121 16.88 27.43 1.84
MTM/MTZ288 HVV 46773 15.49 27.29 3.02 35779 19.28 32.18 1.86
MTM/MTZ 320 HWW 51169 16.98 29.06 3.01 40093 21.76 35.51 1.84

 

50HZ DATA  
Model  50Hz Nominal Cooling Capacity/Capacity Input Power COP E.E.R. c Displacement Displacement Injection flow d Net.W
TR W Btu/h KW W/W Btu/h/W cm³/rev m3/h dm3 kg
R22 Single Sm084 7 20400 69600 6.12 3.33 11.4 114.5 19.92 3.3 64
SM090 7.5 21800 74400 6.54 3.33 11.4 120.5 20.97 3.3 65
SM100 8 23100 79000 6.96 3.33 11.3 127.2 22.13 3.3 65
SM110 9 25900 88600 7.82 3.32 11.3 144.2 25.09 3.3 73
SM112 9.5 27600 94400 7.92 3.49 11.9 151.5 26.36 3.3 64
SM115 9.5 28000 95600 8.31 3.37 11.5 155.0 26.97 3.8 78
SM120 10 35710 157100 8.96 3.36 11.5 166.6 28.99 3.3 73
SM124 10 31200 106300 8.75 3.56 12.2 169.5 29.5 3.3 64
SM125 10 35710 157100 8.93 3.37 11.5 166.6 28.99 3.8 78
SM147 12 36000 123000 10.08 3.58 12.2 193.5 33.7 3.3 67
SM148 12 36100 123100 10.80 3.34 11.4 199.0 34.60 3.6 88
SM160 13 39100 133500 11.60 3.37 11.5 216.6 37.69 4.0 90
SM161 13 39000 133200 11.59 3.37 11.5 216.6 37.69 3.6 88
SM175 14 42000 143400 12.46 3.37 11.5 233.0 40.54 6.2 100
SM/SY185 15 45500 155300 13.62 3.34 11.4 249.9 43.48 6.2 100
SY240 20 61200 2 0571 0 18.20 3.36 11.5 347.8 60.50 8.0 150
SY300 25 78200 267000 22.83 3.43 11.7 437.5 76.10 8.0 157
SY380 30 94500 322700 27.4 3.46 11.8 531.2 92.40 8.4 158
R107C Single SZ084 7 19300 66000 6.13 3.15 10.7 114.5 19.92 3.3 64
SZ090 7.5 20400 69600 6.45 3.16 10.8 120.5 20.97 3.3 65
SZ100 8 21600 73700 6.84 3.15 10.8 127.2 22.13 3.3 65
SZ110 9 24600 84000 7.76 3.17 10.8 144.2 25.09 3.3 73
SZ115 9.5 26900 91700 8.49 3.16 10.8 155.0 26.97 3.8 78
SZ120 10 28600 97600 8.98 3.18 10.9 166.6 28.99 3.3 73
SZ125 10 28600 97500 8.95 3.19 10.9 166.6 28.99 3.8 78
SZ148 12 35100 119800 10.99 3.19 10.9 199.0 34.60 3.6 88
SZ160 13 38600 131800 11.77 3.28 11.2 216.6 37.69 4.0 90
SZ161 13 37900 129500 11.83 3.21 10.9 216.6 37.69 3.6 88
SZ175 14 45710 136900 12.67 3.17 10.8 233.0 40.54 6.2 100
SZ185 15 43100 147100 13.62 3.16 10.8 249.9 43.48 6.2 100
SZ240 20 59100 201800 18.60 3.18 10.9 347.8 60.50 8.0 150
SZ300 25 72800 248300 22.70 3.20 10.9 437.5 76.10 8.0 157
SZ380 30 89600 305900 27.60 3.25 11.1 431.2 92.40 8.4 158

Model Nominal Cooling Capacity 60Hz Nominal Cooling Capacity/Capacity Input Power maximum rated current COP  Displacement  Displacement  Injection flow Net.W
TR W Btu/h kW MCC COP W/W EERBtu/h/W cmVrev m3/h dm3 kg
R22 HRM032U4 2.7 7850 26790 2.55 9.5 3.08 10.5 43.8 7.6 1.06 31
HRM034U4 2.8 8350 28490 2.66 9.5 3.14 10.5 46.2 8.03 1.06 31
HRM038U4 32 9240 31520 2.94 10.0 3.14 10.7 46.2 8.03 1.06 31
HRM040U4  3.3 9710 33120 2.98 10 3.26 11.1 54.4 9.47 1.06 31
HRM042U4 35 10190 34770 3.13 11.0 3.26 11.1 57.2 9.95 1.06 31
HRM045U4 3.8 10940 37310 3.45 12 3.17 10.8 61.5 10.69 1.33 31
HRM047U4 3.9 11500 39250 3.57 12.0 3.23 11.0 64.1 11.15 1.33 31
HRM048U4 4 11510 39270 3.57 12.5 3.23 11 64.4 11.21 1.57 37
HRM051T4 4.3 12390 44280 3.67 13.0 3.37 11.5 68.8 11.98 1.57 37
HRM051U4 4.3 12800 43690 3.83 13 3.34 11.4 68.8 11.98 1.57 37
HRM054U4 4.5 13390 45680 3.97 13.1 3.37 11.5 72.9 12.69 1.57 37
HRM058U4 4.8 14340 48930 4.25 15 3.37 11.5 78.2 13.6 1.57 37
HRM060T4 5.0 14570 49720 4.28 15.0 3.40 11.6 81.0 14.09 1.57 37
HRM060U4 5.0  14820 5 0571 4.4 15 3.37 11.5 81 14.09 1.57 37
HLM068T4 5.7 16880 57580 5.00 15.0 3.37 11.5 93.1 16.20 1.57 37
HLM072T4 6.0  17840 6 0571 5.29 15 3.37 11.5 98.7 17.2 1.57 37
HLM075T4 6.3 18430 62880 5.37 16.0 3.43 11.7 102.8 17.88 1.57 37
HLM081T4 6.8 19890 67880 5.8 17 3.43 11.7 110.9 19.3 1.57 37
HCM094T4 7.8 23060 78670 6.80 21.0 3.39 11.6 126.0 21.93 2.66 44
HCM109T4 9.1 26690 91070 7.77 24 3.43 11.7 148.8 25.89 2.66 44
HCM120T4 10.0 29130 99390 8.51 25.0 3.42 11.7 162.4 28.26 2.66 44
R407C HRP034T4  2.8 7940 27080 2.68 9.5 2.96 10.1 46.2 8 1.06 31
HRP038T4 3.2 8840 30150 2.82 11 3.14 10.7 51.6 8.98 1.06 31
HRP040T4 3.3 9110 31080 3.14 11.5 2.9 9.9 54.4 9.47 1.06 31
HRP042T4 3.5 9580 32680 3.3 10 2.9 9.9 57.2 9.95 1.06 31
HRP045T4 3.8 1571 36890 3.58 12 3.02 10.3 61.5 10.69 1.33 31
HRP047T4 3.9 11130 37980 3.69 12 3.02 10.3 64.1 11.15          1.33 31
HRP048T4 4.0  11100 37880 3.35 12 3.31 11.3 64.4 1L21 1.57 37
HRP051T4 4.3 12120 41370 3.83 13 3.17 10.8 68.8 11.98 1.57 37
HRP054T4 4.5 12570 42880 3.97 12.5 3.17 10.8 72.8 12.66 1.57 37
HRP058T4 4.8 13470 45970 4.25 14.0 3.17 10.8 78.2 13.6 1.57 37
HRP060T4 5.0  13860 47280 4.26 15 3.25 11.1 81 14.09 1.57 37
HLP068T4 5.7 15700 53560 5.10 15.0 3.08 10.5 93.1 16.20 1.57 37
HLP072T4 6.0  16810 57350 5.16 15 3.26 11.1 98.7 17.17 1.57 37
HLP075T4 6.3 18040 61550 5.54 16.0 3.26 11-1 102.8 17.88 1.57 37
HLP081T4 6.8 18600 63470 5,66 17 3.28 11,2 110,9 19,30 1,57 37
HCP094T4 7.8 21590 73660 6.63 21.0 3.26 11.1 126.0 21.93 2.66 44
HCP109T4 9.1 25070 85550 7.77 24 3.23 11 148.8 25.89 2.66 44
HCP120T4 10.0 27370 93400 8.47 25.0 3.23 11.0 162.4 28.26 2.66 44
R410A HRH571U4 2.4 7120 24310 2.43 10 2.93 10 27.8 4.84 1.06 31
HRH031U4 26 7530 25710 2.67 10.0 2.82 9.62 29.8 5.19 1.06 31
HRH032U4 2.7 7670 26170 2.75 10 2.79 9.51 30.6 5.33 1.06 31
HRH034U4 2.8 8500 29000 2.90 10.0 2.93 10.0 33.3 5.75 1.06 31
HRH036U4 3 8820 30110 3.13 10 2.82 9.62 34.7 6.04 1.06 31
HRH038U4 3.2 9250 31560 3.35 12.0 2.76 9.41 36.5 6.36 1.06 32
HRH040U4 3.3 15710 34810 3.58 12 2.85 9.72 39.6 6.9 1.33 32
HRH041U4 3.3 10050 34300 3.43 12.5 2.93 10 39.3 6.8 1.57 37
HRH044U4 3.7 1 0571 36940 3.92 13.5 2.76 9.41 42.6 7.41 1.57 37
HRH049U4 4.1 12110 41320 4.04 13.5 2.99 10.22 47.4 8.24 1.57 37
HRH051U4 4.3 12860 43890 4.21 13 3.05 10.42 49.3 5.58 1.57 37
HRH054U4 4.5 13340 45510 4.41 15.0 3.02 10.32 52.1 9.07 1.57 37
HRH056U4 4.7 13830 47200 4.58 15 3.02 1031 54.1 9.42 1.57 37
HLH061T4 5.1 15210 51880 4.89 15.0 3.11 1061 57.8 10.10 1.57 37
HLH068T4  5.7 16880 57610 5.26 19 3.21 1096 64.4 11.21 1.57 37
HLJ072T4 6.0 17840 60900 5.56 19.0 3.21 11.0 68.0 11.82 1.57 37
HLJ075T4  6.3 18600 63490 5.77 18 3.22 11 70.8 12.32 1.57 37
HLJ083T4 6.9 20420 69690 6.28 19.0 3.25 Hl 78.1 13.59 1.57 37
HCJ090T4 7.5 22320 76190 7.19 19 3.11 10.6 86.9 15.11 2.66 44
HCJ105T4 8.8 26100 89090 8.25 25.0 3.16 10.8 101.6 17.68 2.66 44
HCJ120T4 10 29610 157180 9.53 27 3.11 10.6 116.4 20.24 2.66 44

 

Model HP Voltage
MLM019T5LP9 2.5 220-240V-1-50HZ
MLM571T5LP9 3 220-240V-1-50HZ
MLM026T5LP9 3.5 220-240V-1-50HZ
MLM015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLM019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLM571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLM026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLM030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLM038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLM045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLM048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLM058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLM066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLM076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22.
 
Model HP Voltage
MLZ019T5LP9 2.5 220-240V-1-50HZ
MLZ571T5LP9 3 220-240V-1-50HZ
MLZ026T5LP9 3.5 220-240V-1-50HZ
MLZ015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLZ019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLZ571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLZ026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLZ030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLZ038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLZ045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLZ048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLZ058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLZ066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLZ076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22

Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Installation Type: Movable Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Model: Hrm060u4
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China best Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R22 Single Hrm060u4 in Stock   air compressor for carChina best Danfos Scroll Parts Air Cooler Refrigeration Compressor Danfos 50Hz R22 Single Hrm060u4 in Stock   air compressor for car
editor by CX 2024-02-08

China Good quality 3000W Air Cooler Cabinet Thermoelectric Air Conditioner Refrigeration Compressor air compressor portable

Product Description

Company Profile

Cooltec Cooling Technology (HangZhou) Co., Ltd. is a high-tech enterprise integrating R&D, manufacturing, sales, and service. At present, the company’s main products are industrial air conditioners and water chillers. The core R&D team of Coltec comes from a famous industrial refrigeration enterprise in the US and has world-leading industrial refrigeration technology.

 

Product Description

 

This air conditioner is a refrigeration product independently developed for the cooling of communication cabinets, which is suitable for applications where the internal heat of the cabinet is large, the internal electronic equipment is sensitive to the ambient temperature, and the inside and outside need to be completely isolated.This product has complete functions, high reliability, simple installation, can work after power-on, and does not require complex debugging.
 

Our advantages:

1.Customization
The parts we customize fit and perform exactly as the manufacturer intended. This will help increase the longevity of your equipment and save your money.
2.OEM
Cooltechx can help newly established brands reduce the time cost and investment risk of building factories. Labeling service is provided.
3.After Sales Service
During the warranty, once the product breaks down for quality or production problems, the brand-new product will be shipped to the customer.
4.High Quality
Cooltechx ensures 100% quality inspection of each industrial cooling system. Every product is tested under strict control.

 Usage scenarios:

packaging&shipping:

Product parameters:

Technical parameters of cabinet air conditioner
Model CTACG0526N CTACG 0571 N CTACG3026N CTACC5026W CTACT1026W CTACT1526W
Overall dimension 508*300*216mm 550*280*280mm 1580*400*295mm 2150*900*700mm 784*482*175mm 784*482*210mm
Weight 23Kg 23Kg 52Kg 90Kg 28Kg 30Kg
Cooling capacity(L35/L35) 500W 800W 3000W 5000W 1000W 1500W
Power consumption(L35/L35) 280W 400W 1050W 1850W 410W 650W
Max nominal current 2.5A 3.5A 11A 17A 3.5A 4.5A
Starting current 5A 5.4A 20.1A 9.1A 10.7A 15.6A
Operating temperature range 20ºC~55ºC 20ºC~55ºC 20ºC~55ºC -40~55ºC -40~55ºC -40~55ºC
Noise 60dB(A) 60dB(A) 68db(A) ≤65dB(A) 65dB(A) 65dB(A)
Refrigerant R134a   R134a R134a R134a R134a
Air volume 180m³/h 210m³/h 500m³/h 1400m³/h 366m³/h 500m³/h
Power supply AC 230V±10% 50/60Hz AC 230V±10% 50/60Hz AC 230V±10% 50/60Hz AC380V±10% 50/60Hz AC 230V±10% 50/60Hz AC 230V±10% 50/60Hz
IP code IP54 IP54 IP54 IP56 IP56 IP56
Finish Outdoor powder RAL7035 Outdoor powder RAL7035 Outdoor powderRAL7035 Outdoor powderRAL7035 Outdoor powder RAL7035 Outdoor powder RAL7035

    certifications:

Corporate Culture

 

 

 

FAQ

Q: Are you a Trading Company or  Manufacturing Factory?
A: We are the leading manufacturer in HangZhou area for 25 years, our products have competitive price and quality guarantee. Welcome to send your inquiry!
 
Q:Can your products be customized?
A:Yes, we can customize the products according to customer needs.
 
Q: How about the delivery time?
A: 10-15 days after receiving the deposit based on the MOQ. Normally, 30-35 days to finish the order for a 20ft container.Of course, we can also meet the urgent delivery time if the production schedule is not tight. Welcome to ask for the detailed delivery time according to your order quantity!
 
Q: How can you guarantee the product quality?
A: We have the quality control system ISO9001:2008, and it’s been followed strictly. We also have a professional QC team, and each of our package workers will be in charge of the final inspection according to the QC instructions before packing.
 
Q:What is the minimum order quantity limit for air conditioners?
A: The MOQ is low, 1 piece sample can be provided for inspection.
 
Q: I’d like to know your Payment terms.
A: Basically, the payment terms are T/T, L/C at sight. Western Union, Paypal, Moneygram, and Credit card are acceptable for sample orders.
 
Q: How can I know how my order is being done?
A: We will inspect and test all items in order to avoid damage and missing parts before shipping. The detailed inspection pictures of the order will be sent to you for your confirmation before delivery.

Industrial refrigeration technology, innovation-driven, with exceptional efficiency,

propelling your business to new heights!

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Lifelong
Warranty: 1 Year
Type: Cabinet Air Conditioner
Air Tube Material: Galvanized Sheet
Corrosion Durability: Ultrahigh
Operating Voltage: 380/400 VAC
Samples:
US$ 1036/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China Good quality 3000W Air Cooler Cabinet Thermoelectric Air Conditioner Refrigeration Compressor   air compressor portableChina Good quality 3000W Air Cooler Cabinet Thermoelectric Air Conditioner Refrigeration Compressor   air compressor portable
editor by CX 2024-01-31